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ABSTRACT

Motivated by the facts that, (1), the spatial structure of im-
ages and the correlation among color channels are important
for color face recognition, and (2), natural face images may be
occluded, in this work, we propose two-dimensional quater-
nion sparse principle component analysis (2DQSPCA) to ex-
tract features for color face recognition. 2DQSPCA inherent-
ly takes the advantage of 2DPCA in preserving the structure
of two-dimensional data, as well as the strength of quaternion-
s in representing color images holistically. Benefited from the
sparsity constraints, 2DQSPCA is robust for occlusions. Ex-
periments demonstrate the superior performance of 2DQSP-
CA on color face recognition, especially with occlusions.

Index Terms— 2DPCA, quaternion, sparse, color face
recognition

1. INTRODUCTION

Principal component analysis (PCA) [1] and its variants are
unsupervised learning approaches for feature extraction, di-
mensionality reduction and pattern classification [2–4].

In the application of face recognition, PCA was adopted
to represent gray-scale face images in [2]. It converts two-
dimensional (2D) face images to high-dimensional (HD) vec-
tors prior to feature extraction. To avoid the intensive com-
putation of HD data while preserving the spatial structure of
face images, 2DPCA algorithms were proposed [3–5].

Considering the color face images, PCA and 2DPCA pro-
cess different color channels independently. They fail to con-
sider the correlation among color channels. However, the
correlation among color channels is important for color face
recognition [6]. To address this problem, quaternion PCA
(QPCA) was introduced [7]. The quaternions encode the rela-
tionship of color channels holistically, providing a nice way to
process color face images. Nevertheless, QPCA converts col-
or face images into quaternion vectors and fails to preserve
the spatial structure of images. In addition, these PCA mod-
els use l2 norm as the measurement of errors. Hence they are
susceptible to outliers, e.g., occlusions [5, 8].
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In this paper, we propose two-dimensional quaternion s-
parse PCA (2DQSPCA). Compared with previous works, the
strengths of 2DQSPCA are:
1) Taking the advantages of 2DPCA and quaternion repre-

sentation, 2DQSPCA preserves both the spatial structure
and the color channel correlation of color face images, as
well as relieving the burden of HD data processing;

2) Exploiting the sparsity constraints, 2DQSPCA is robust
for occlusions.

2. QUATERNIONS

We represent scalars, vectors, and matrices in real space (R)
and complex space (C) using lowercase letters, bold lower-
case letters, and bold uppercase letters, respectively, e.g., a,
a, A. In contrast, scalars, vectors, and matrices in quaternion
space (H) are denoted by ȧ, ȧ, Ȧ, etc. Throughout this pa-
per, T , ,̄ and ∗ denote the transpose, conjugate, and transpose
conjugate of complex/quaternion variables, respectively.

Quaternions are a four-dimensional number system (H)
[9]. A quaternion number (q̇ ∈ H) has one real part and three
imaginary parts. It can be represented as, q̇ = q0 + q1i+ q2j+

q3k, where q0, q1, q2, q3 ∈ R, and {i, j, k} are the ordered bases
of the imaginary parts, satisfying:

i2 = j2 = k2 = ijk = −1.

ij = −ji = k, jk = −kj = i, ki = −ik = j.

The norm of q̇ is defined as |q̇| =
√
q20 + q21 + q22 + q23 , and

the conjugate of q̇ follows ¯̇q = q0 − q1i − q2j − q3k. Note
that the multiplication of two quaternions is noncommuta-
tive, i.e., ṗq̇ 6= q̇ṗ in general. This makes it quite difficult for
many quaternion operations. As pointed in [10], one effective
approach to deal with quaternions is to convert them into the
equivalent complex forms. The following definitions provide
useful tools for analyzing quaternions.

Definition 1. Let q̇ = (q̇s) ∈ Hm, where s = 1, ...,m is
a position indicator. The l1 and l2 norms of q̇ are defined as

‖q̇‖1 =
m∑
s=1

|q̇s|, and ‖q̇‖2 = (
m∑
s=1

|q̇s|2)
1
2 , respectively.

Definition 2. Let Q̇ = (q̇s,t) ∈ Hm×n, where s = 1, ...,m

and t = 1, ..., n are the row and column indicators, respective-

ly. The F norm of Q̇ is defined as ‖Q̇‖F = (
m∑
s=1

n∑
t=1

|q̇s,t|2)
1
2 .
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Definition 3. Let Q̇ = Q0 +Q1i+Q2j+Q3k, Q̇ ∈ Hm×n,
Q0,Q1,Q2,Q3 ∈ Rm×n. The Cayley-Dickson construction
represents Q̇ using an ordered pair of complex matrices [10]:

Q̇ = Qa + Qbj,

where Qa = Q0 +Q1i, Qb = Q2 +Q3i, and Qa,Qb ∈ Cm×n.
Definition 4. Let Q̇ = Qa + Qbj, Q̇ ∈ Hm×n. The com-

plex adjoint form of Q̇ is formulated as [10, 11]:

χQ̇ =

[
Qa Qb

−Qb Qa

]
,

where χQ̇ ∈ C2m×2n, and Q̇ and χQ̇ are isomorphic.
Let Ṗ, Q̇ ∈ Hm×m. The following facts come from the

definition of complex adjoint form [10]:
1. ‖χQ̇‖

2
F = Tr[(χQ̇)∗χQ̇] = 2‖Q̇‖2F = 2Tr(Q̇∗Q̇)

2. (χQ̇)∗ = χQ̇∗

3. χ(Ṗ+Q̇) = χṖ + χQ̇

4. χṖQ̇ = χṖχQ̇

Besides, the complex adjoint form is commutative for
multiplication and has been widely used for quaternion ma-
trix analysis [10, 12].

3. 2DQSPCA

Inspired by the regression-type model of sparse PCA [13],
this section proposes 2DQSPCA as a quaternion regression
optimization model.

3.1. 2DQSPCA

Let {Ẋi ∈ Hm×n}hi=1 be a collection of quaternion samples.
The objective of 2DQSPCA is to find a set of orthonormal and
sparse bases, denoted by the columns of V̇ = [v̇1, ..., v̇k] ∈
Hm×k, such that, when projecting samples onto these bases,
the projected samples {V̇∗Ẋi}hi=1 have the largest scatter.

2DQSPCA obtains the optimal [v̇1, ..., v̇k] as follows:
Find Ȧ = [ȧ1, ..., ȧk] ∈ Hm×k and Ḃ = [ḃ1, ..., ḃk] ∈ Hm×k,
satisfying:

( ˆ̇A, ˆ̇B)=arg min
Ȧ,Ḃ

(

h∑
i=1

‖Ẋi−ȦḂ∗Ẋi‖2F +λ2

k∑
j=1

‖ḃj‖22+

k∑
j=1

λ1,j‖ḃj‖1)

subject to Ȧ∗Ȧ = Ik. (1)

Then, ˆ̇vj =
ˆ̇
bj

‖ˆ̇bj‖
, j = 1, 2, ..., k.

Eq. (1) is the proposed quaternion regression model for
2DQSPCA. We have the following statements:
1) If we restrict Ȧ = Ḃ and discard the penalty terms, Eq. (1)

reduces to minimize
h∑
i=1

‖Ẋi−ḂḂ∗Ẋi‖2F subject to Ḃ∗Ḃ =

Ik. As pointed in [13, 14], with the F norm measurement,

the optimal Ḃ minimizing
h∑
i=1

‖Ẋi − ḂḂ∗Ẋi‖2F equals to

the one that maximizing the scatter of {Ḃ∗Ẋi}hi=1. Hence
Eq. (1) can be regarded as the regression model of quater-
nion PCA.

2) Theorem 3 in [13] proved that by relaxing the constraint
Ȧ = Ḃ and adding l2 norm penalties on the columns of
Ḃ, the optimal columns of Ḃ are still proportional to the
bases that maximize the scatter of the projected samples.
We adopt a fixed coefficient λ2 > 0 for all columns since
they will not affect the solution of Eq. (1). In fact, the l2
terms are used to avoid the colinearity problem [15].

3) Imposing l1 norm penalties on the columns of Ḃ, we find
a sparse approximation of the bases that maximize the s-
catter of the projected samples. In our model, we exploit
different coefficients λ1,j > 0, j = 1, ..., k, for the l1 norm
penalties to provide flexible control on sparsity.

3.2. Solution of 2DQSPCA

Due to the non-commutativity of quaternion multiplication,
the solution of 2DQSPCA is slightly complicated. Inspired
by the isomorphism between quaternions and their complex
adjoint forms, we rewrite the objective function of 2DQSPCA
to a complex form, and solve it in the complex space. Finally,
we convert the solution back to the quaternion space to obtain
the final solution of 2DQSPCA.

Considering the model of 2DQSPCA (Eq. (1)), the F and
l2 norm measurements can be easily transformed into com-
plex space using the complex adjoint form. And the conver-
sion of quaternion l1 norm is given in Definition 5.

Definition 5. Let q̇ = qa + qbj, q̇ ∈ Hm, and q ∈ C2m be
the first column of of χq̇, i.e., q = χq̇(:, 1) = [qa;−qb]. We
define an operator ξ(·):

ξ(q) = [qTa ;qTb ],

where ξ(q) ∈ C2×m. Thus, the l1 norm of q̇ equals to the l2,1
norm of matrix ξ(q):

‖q̇‖1 = ‖ξ(q)‖2,1,

where ‖M‖2,1 denotes the l2,1 norm of M ∈ Cn×m, and it is

defined as ‖M‖2,1 =
m∑
j=1

‖M(:, j)‖2.

Let α = χȦ, β = χḂ, ϕ =
h∑
i=1

χẊi
χẊ∗

i
. There are two

observations that are useful to rewrite Eq. (1): (1), ϕ is Her-
mitian, thus, Tr(α∗ϕβ) is the conjugate of Tr(β∗ϕα); (2), the
complex adjoint form has a redundant structure. Therefore
we can infer the right half columns of any complex adjoint
matrix from its left half columns.

Hence Eq. (1) has an equivalent complex form:

(α̂, β̂) = arg min
α,β

{Trϕ− 2Tr(α∗ϕβ) + Tr[β∗(ϕ+ λ2I)β]

+ 2

k∑
j=1

λ1,j‖ξ(βj)‖2,1} (2)

= arg min
α,β

{
k∑
j=1

[β∗j (ϕ+ λ2I)βj − 2Re(α∗jϕβj)

+ λ1,j‖ξ(βj)‖2,1]} (3)
subject to α∗α = I2k.

where Re(·) denotes the real part of a complex number.

1529



We develop an alternating minimization algorithm to
solve Eqs. (2)/(3).

1. Fixing α, find optimal β. Given α, Eq. (3) reduces to
individually solve k sub-problems:

β̂j=arg min
βj

[β∗j (ϕ+λ2I)βj−2Re(α∗jϕβj)+λ1,j‖ξ(βj)‖2,1] (4)

Due to the sum-of-norms regularization (l2,1 norm peanlties),
there is no closed-form expression for β̂j . Therefore, we ob-
tain the solution using the complex ADMM algorithm [16].
Let T = ξ(βj), and vec(T) represents the vectorization of
T by concatenating the transpose of each row into a column
vector. The augmented Lagrangian function of Eq. (4) is:

L(βj ,T,y) =β∗j (ϕ+ λ2I)βj − 2Re(α∗jϕβj) + λ1,j‖T‖2,1

+ y∗[βj − vec(T)] +
ρ

2
[βj − vec(T)]22, (5)

where y is the Lagrangian multiplier and ρ > 0 is the penalty
parameter. The complex ADMM algorithm for optimizing
L(βj ,T,y) is composed of iterations:

β
(τ+1)
j = arg min

βj
L(βj ,T

τ ,yτ ), (6)

T(τ+1) = arg min
T

L(β
(τ+1)
j ,T,yτ ), (7)

y(τ+1) = y(τ) + ρ[β
(τ+1)
j − vec(T)(τ+1)]. (8)

Step 1 of complex ADMM: Fixing (T(τ),y(τ)), update
β
(τ+1)
j by minimizing L w.r.t βj . This is implemented by

setting the complex gradient of L w.r.t βj to zero [17].

β
(τ+1)
j = [ϕ+ (λ2 + ρ)I]−1[ϕαj + ρvec(T(τ))− y(τ)] (9)

Step 2 of complex ADMM: Fixing (β(τ+1)
j ,y(τ)), update

T(τ+1) by minimizing L w.r.t T. Considering T, the optimal
L is equivalent to find:

T̂= arg min
T
{ρ

2
[β

(τ+1)
j −vec(T)]22+y∗[β

(τ+1)
j −vec(T)]+λ1,j‖T‖2,1}

= arg min
T
{[vec(T)−(β

(τ+1)
j +

y(τ)

ρ
)]22+

λ1,j

ρ
‖T‖2,1}

= arg min
T
{[T−vec−1(β

(τ+1)
j +

y(τ)

ρ
)]2F +

λ1,j

ρ
‖T‖2,1}, (10)

where vec−1(·) is the inverse of vec(·). This way, L is con-
verted to the problem that utilizes the sum-of-norms regular-
ization on T. It can be solved following Lemma 1 [18].

Lemma 1. If a problem considering T is to find:

T̂ = arg min
T

[(T− S)2F + γ‖T‖2,1] (11)

Then, the optimal T achieves at:

T̂(:, i) =

{
‖S(:,i)‖2−γ
‖S(:,i)‖2

S(:, i), ‖S(:, i)‖2 > γ

0, otherwise
(12)

Step 3 of complex ADMM: Fixing (β(τ+1)
j ,T(τ+1)), update

y(τ+1) using Eq.(8).

We obtain β̂j when the complex ADMM algorithm con-
verges. The same operations are performed independently for
j = 1, ..., k. Then, due to the redundant structure of complex
adjoint form, we can infer β̂j+k from β̂j , j = 1, ..., k.

2. Fixing β, find optimal α. The minimizing of Eq. (2)
w.r.t α equals to finding α that maximizes Re[Tr(α∗ϕβ)]. The
optimal α can be obtained following Lemma 2, and the proof
of Lemma 2 is given by Theorem 4 in [13].

Lemma 2. Let α, η ∈ Cm×k, and the rank of η is k (k <

m). Consider the constrained optimization:

α̂ = arg max
α

Re[Tr(α∗η)] (13)

subject to α∗α = I2k

Suppose the SVD of η is η = UηDηV
∗
η , then α̂ = UηV

∗
η .

The alternating minimization algorithm for solving Eqs.
(2)/(3) starts at any α∗α = I2k. The stopping condition is the
convergence of β. Afterwards, we can recover the quaternion-
valued solution from the complex-valued solution using the
operator defined in Definition 6 [12].

Definition 6. Let c = [c1, c2, ..., cn, cm+1, cm+2, ..., c2m]T ,
c ∈ C2m. Define an operator γ(·):

γ(c) = [c1, c2, ..., cn]T + [cm+1, cm+2, ..., c2m]T j,

where γ(c) ∈ Hm is represented by Cayley-Dickson form.
Then, the optimal bases [v̇1, ..., v̇k] for 2DQSPCA can be

recovered from the columns of β̂ using: ˆ̇vj = γ(
ˆ̇
βj

‖ ˆ̇βj‖
), j =

1, ..., k. Finally, the detailed implementation of 2DQSPCA is
summarized in Algorithm 1.

Algorithm 1: 2DQSPCA
Input : Training set {Ẋi}hi=1, sparsity constraints, and stopping

criterion.
Output: Optimal sparse bases [v̇1, ..., v̇k].

1 Rewrite the model of 2DQSPCA to its complex form (Eqs. (2)/(3)).
Convert the objective to finding optimal α, β that satisfy Eqs. (2)/(3).

2 Initialize α such that α∗α = I2k .
3 repeat
4 (1) Fixing α, find optimal β.
5 for each βj , j = 1, ..., k, do
6 Find optimal β̂j that satisfies the sparsity constraint using

complex ADMM.
7 end
8 for each βj+k , j = 1, ..., k, do
9 Infer β̂j+k from β̂j .

10 end
11 (2) Fixing β, find optimal α. Let ϕβ = UDV ∗, update α

using α̂ = UV ∗, where ϕ =
h∑
i=1

χẊi
χẊ∗

i
.

12 until β converges;
13 for j = 1, ..., k, do

14 Recover ˆ̇vj from β̂j using ˆ̇vj = γ(
ˆ̇
βj

‖ ˆ̇βj‖
), where γ(·) is a

recover operator defined in Definition 6.
15 end
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Table 1: Recognition rates of different algorithms on AR database.

Test Person/Train/Test PCA [1] SPCA [13] 2DPCA [3] MPCA [19] MSPCA [8] OSPCA [20] G2DPCA [21] QPCA [7] 2DQSPCA
Clean images 100/7/7 0.7486 0.7514 0.79 0.7614 0.8357 0.7571 0.7943 0.8142 0.8914∗

Realistic occlusion 100/14/12 0.275 0.4225 0.7617 0.5283 0.6667 0.4 0.7675 0.4575 0.845∗∗

Artificial occlusion1 100/7/7 0.1371 0.2485 0.31 0.2843 0.5429 0.322 0.5429 0.1671 0.6614∗∗

Artificial occlusion2 100/7/7 0.2842 0.3371 0.5128 0.3886 0.6029 0.4772 0.5986 0.3943 0.7957∗∗

Artificial occlusion3 100/7/7 0.5057 0.5357 0.58 0.5229 0.7 0.5445 0.6400 0.59 0.7729∗∗

Artificial occlusion4 100/7/7 0.4671 0.5142 0.5957 0.5257 0.7214 0.56 0.6814 0.58 0.8014 ∗∗

Bold type indicates the best performance under the same experimental setting; one asterisk (∗) and two asterisks (∗∗) designate more than 5% improvement and more than 10%
improvement between the current algorithm and the best peer algorithm, respectively.

4. APPLICATION

4.1. Color face recognition

To verify the effectiveness of 2DQSPCA on color face recog-
nition, AR face database [22, 23] is employed. Optimal bases
are learned from the training set and the testing samples are
projected onto the bases afterwards. Finally, we use the near-
est neighbor classifier with l1 norm distance for classification.

We provide six tests. The first one is on the clean faces
with seven images per person for training and the rest sev-
en images per person for testing; the second one exploits 14
clean images for training, and the rest images with natural oc-
clusions (sunglasses, or scarf) for testing. For the last four
tests, each one adopts the first seven clean images for train-
ing, and other seven clean images with manually imposed oc-
clusions for testing. The occlusions are black blocks, white
blacks, color squares, and random meaningful images (we
adopt seven random images in total), respectively. Each oc-
clusion is scaled to 1/4 of the size of face images, and is im-
posed at a random location. Examples of the AR database and
the four kinds of occlusions are given in Fig. 1.

Fig. 1: Examples of AR database and the occlusions.

2DQSPCA is compared with nine state-of-the-art peer
algorithms. For all competing algorithms, we obtain their
recognition rates under all settings of dimensions; consider-
ing the sparse methods, we further test them under multiple
sparsity constraints, and in each test, the sparsity constraints
of different bases are fixed for simplicity. Generally, 2DQSP-
CA achieves better performance than its competitors, and
impressive improvements are obtained when the testing im-
ages are occluded. Finally, the best recognition rates of all
compared algorithms are reported in TABLE 1.

4.2. Analysis on the properties of 2DQSPCA

In this subsection, we investigate the properties of 2DQSP-
CA, including the ability of dimensionality reduction and the
sparsity for the obtained bases. Fig. 2 illustrates the relation-
ship among the recognition rate, dimensions and cardinali-
ties (the number of nonzero elements) of bases for the ex-
periment on clean AR faces. Considering dimensionality re-
duction, 2DQSPCA achieves stable good performance within
half (16∗32) of original dimensions (32∗32). In the viewpoint
of the sparsity, less than 10 nonzero elements are enough for
the bases of 2DQSPCA, yielding bases with high sparsity.
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Fig. 2: Recognition rates versus dimensionality and cardinal-
ity (number of nonzero elements) on clean AR face images.

Besides, as we can see from TABLE 1, 2DQSPCA shows
superior performance compared with SPCA and QPCA. This
is because 2DQPCA preserves the spatial structure and the
color channel correlation of color face images, and it also con-
ducts sparse feature selection for robust recognition.

5. CONCLUSION

In this paper, we proposed 2DQSPCA to extract features for
color face recognition. 2DQSPCA has advantages in pro-
cessing color face images since it well preserves the spatial
structure and the color channel correlation of images. Fur-
ther, 2DQSPCA obtains benefit from the sparsity constraints,
making it robust for occlusions. Experiments on the AR face
database demonstrate that 2DQSPCA has good recognition
performance for color face recognition, especially for recog-
nizing face images with occlusions.
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